Data collection	
Syntex P4 automated	792 observed reflections
diffractometer	$[F > 6.0\sigma(F)]$
$\theta/2\theta$ scans	$R_{\rm int} = 0.0355$
Absorption correction:	$\theta_{\rm max} = 23.0^{\circ}$
semi-empirical from ψ	$h = -1 \rightarrow 6$
scans (XEMP; Siemens,	$k = -1 \rightarrow 11$
1991)	$l = -12 \rightarrow 12$
$T_{\min} = 0.25, T_{\max} = 0.68$	3 standard reflections
1368 measured reflections	monitored every 97
931 independent reflections	reflections
	intensity decay: <5%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 1.80 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.052	$\Delta \rho_{\rm min} = -1.74 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.063	Extinction correction: none
S = 1.20	Atomic scattering factors
931 reflections	from International Tables
86 parameters	for X-ray Crystallography
$w = 1/[\sigma^2(F) + 0.0008F^2]$	(1974, Vol. IV, Table
$(\Delta/\sigma)_{\rm max} = 0.006$	2.2B)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for LiNi₂P₃O₁₀

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	У	z	U_{eq}
Nil	0.0366 (1)	0.0691(1)	0.3363(1)	0.007(1)
Lil	0	0	0	0.030(4)
P1	0.4637 (3)	1/4	0.1452(1)	0.006(1)
P2	-0.6669 (3)	1/4	0.8209(1)	0.006(1)
P3	-0.3979 (3)	1/4	0.5346(1)	0.006(1)
011	0.2891 (6)	0.0985 (3)	0.1597 (3)	0.008(1)
012	0.7700 (9)	1/4	0.2381 (4)	0.009(1)
021	-0.4319 (10)	1/4	0.7100(4)	0.011(1)
O22	-0.4459 (9)	1/4	0.9756 (4)	0.008 (1)
O23	-0.8400 (7)	0.0985 (3)	0.8107 (3)	0.010(1)
O31	-0.2283 (6)	0.0972 (3)	0.5129 (3)	0.008 (1)
O32	-0.7074 (9)	1/4	0.4462 (4)	0.009(1)

Table 4. Selected geometric parameters (Å) for

$LiNi_2P_3O_{10}$				
2.059 (3)	P1-011 ^{vii}	1.513 (3)		
2.040 (3)	P1 ^{viii} —O22	1.624 (4)		
2.044 (3)	P1-012	1.525 (4)		
2.132 (3)	P2-021	1.560 (4)		
2.095 (3)	P2—O22	1.592 (4)		
2.072 (3)	P2-023	1.489 (3)		
1.982 (3)	P2-023 ^{vin}	1.489 (3)		
2.100(3)	P3-021	1.594 (4)		
1.982 (3)	P3-032	1.521 (4)		
2.100 (3)	P3-031	1.521 (3)		
1.513 (3)	P3-031 ^{vii}	1.521 (3)		
	<i>L1/V12F</i> 2.059 (3) 2.040 (3) 2.044 (3) 2.132 (3) 2.095 (3) 2.072 (3) 1.982 (3) 2.100 (3) 1.982 (3) 2.100 (3) 1.513 (3)	<i>LlNl</i> ₂ <i>P</i> ₃ <i>O</i> ₁₀ 2.059 (3) P1O11 ^{vii} 2.040 (3) P1 ^{vii} -O22 2.044 (3) P1O12 2.132 (3) P2O21 2.095 (3) P2O22 2.072 (3) P2O23 1.982 (3) P2O23 ^{vii} 2.100 (3) P3O21 1.982 (3) P3O31 1.513 (3) P3O31 ^{vii}		

Symmetry codes: (i) x - 1, y, z; (ii) -1 - x, -y, 1 - z; (iii) -x, -y, 1 - z; (iv) 1 + x, y, z; (v) 1 + x, y, z - 1; (vi) -x, -y, -z; (vii) x, $\frac{1}{2} - y$, z; (viii) x - 1, y, 1 + z.

A variable scan rate was used with a scan width of 1.2° below $K\alpha_1$ and 1.2° above $K\alpha_2$. Refinement was completed using full-matrix least-squares methods.

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXTL-Plus (Sheldrick, 1992); molecular graphics: XP (Siemens, 1990).

The authors express their thanks to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation and to the Moroccan–American Commission for a Fulbright grant to EMH.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1124). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Averbuch-Pouchot, M. T. & Durif, A. (1975). J. Appl. Cryst. 8, 564.Averbuch-Pouchot, M. T. & Durif, A. (1985). Acta Cryst. C41, 1553–1555.
- Averbuch-Pouchot, M. T., Durif, A., Coing-Boyat, J. & Guitel, J. C. (1977). Acta Cryst. B33, 203–205.
- Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. (1975). Acta Cryst. B31, 2482-2486.
- Bagieu-Beucher, M., Durif, A. & Averbuch-Pouchot, M. T. (1976). J. Appl. Cryst. 9, 412.
- Corbridge, D. E. C. (1960). Acta Cryst. 13, 263-269.
- Corbridge, D. E. C. & Tromans, E. R. (1958). Anal. Chem. 30, 1101-1110.
- Davies, D. R. & Corbridge, D. E. C. (1958). Acta Cryst. 11, 315-319.
- Dyroff, D. R. (1965). Thesis, University of California, USA.
- Jouini, O., Dabbabi, M., Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. (1984). Acta Cryst. C40, 728–730.
- Lee, J. D. (1968). J. Chem. Soc. pp. 2881-2882.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1992). SHELXTL-Plus. Release 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 1869-1872

Zigzag Chain Structure of Hexaammonium Enneamolybdate Pentahydrate

TOSHIHIRO YAMASE, MORIYASU SUGETA AND ERI ISHIKAWA

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatuta Midori-ku, Yokohama 226, Japan

(Received 23 July 1995; accepted 21 November 1995)

Abstract

The title compound, $(NH_4)_6[Mo_9O_{30}].5H_2O$, contains an $\{[Mo_8O_{26}(MoO_4)]^{6-}\}_n$ anion with a zigzag chain structure, in which two adjacent Mo_8O_{26} moieties are linked by an MoO₄ tetrahedron.

Comment

The two MoO₅ trigonal bipyramids in the γ -[Mo₈O₂₆]⁴⁻ anion (Niven, Cruywagen & Heyns, 1991) coordinate with a variety of oxygen- or nitrogen-donating ligands to form MoO₆ octahedra, as exemplified by the structures of $[Mo_8O_{26}(OH)_2]^{6-}$ (Isobe, Marumo, Yamase & Ikawa, 1978), $[Mo_8O_{26}(HCO_2)_2]^{6-}$ (Adams, Klemperer & Liu, 1979), [Mo₈O₂₆(C₅H₅N)₂]⁴⁻ (McCarron, Whitney & Chase, 1984), [Mo₈O₂₆(MoO₄)₂]⁸⁻ (Garin & Costamagna, 1988; Touboul, Idoura & Tolédano, 1984; Bharadwaj, Ohashi, Sasada, Sasaki & Yamase, 1986), $[Mo_8O_{24}(OCH_3)_4]^{4-}$ (McCarron & Harlow, 1983), $[Mo_8O_{22}(OH)_4(OC_6H_4CH=NPr-2)_2]^{2-}$ (OC₆H₄-CH = NPr-2 = N-propylsalicylideneiminate) (Kamenar, Korpar-Colig, Penavic & Cindric, 1990) and [Mo₈O₂₄- $(OH)_2(MetO)_2]^{4-}$ (MetO = methioninate) (Kamenar et al., 1990). In addition, two polymeric forms of the γ -octamolybdates have been discovered. The first example is $\{(NH_4)_6[Mo_8O_{26}(O)]\}_n$ (Böschen, Buss & Krebs, 1974), in which the Mo_8O_{26} repeat units are linked by a μ_2 -O atom to form infinite chains of eight edge-sharing MoO_6 octahedra. The second example is $\{Eu_2(H_2O)_{12}[Mo_8O_{26}(O)]\}_n$ (Yamase & Naruke, 1991), in which the nine-coordinate Eu^{3+} ion is linked by two O atoms of an Mo₈O₂₆ unit and one O atom of a neighbouring unit in the infinite chain $\{[Mo_8O_{26}(O)]^{6-}\}_n$. The Mo₈O₂₆ moieties of these chain compounds are arranged parallel to each other. We report here a novel example of $\{[Mo_8O_{26}(MoO_4)]^{6-}\}_n$, in which two adjacent Mo_8O_{26} moieties are linked by MoO_4^{2-} to form a polymeric structure based on an infinite zigzag chain. To our knowledge, this is the first example of a zigzag chain structure for the polymeric octamolybdates.

An ORTEPII (Johnson, 1976) plot of the $[(M_{08}O_{26})_2 - (M_{00}O_4)]^{10-}$ unit, in which centrosymmetric $M_{08}O_{26}$ moieties are linked by a MoO₄ tetrahedron, is shown in Fig. 1. The discrete $[M_{08}O_{26}(M_{00}O_4)_2]^{8-}$ anion has been found in $[(CH_3)NH_3]_8[M_{08}O_{26}(M_{00}O_4)_2].2H_2O$ (hereafter MAM; Bharadwaj *et al.*, 1986), where the γ - $[M_{08}O_{26}]^{4-}$ ion coordinates to two MoO₄ tetrahedra at the positions of the O14 and O14ⁱ atoms in Fig. 1. Another isomer of the discrete anion, in which MoO₄ groups are attached at the positions of the O7 and O7ⁱ

atoms in Fig. 1, is found in $(NH_4)_6[Mo_8O_{26}(MoO_4)_2]$ and $Tl_8[Mo_8O_{26}(MoO_4)_2]$ (Garin & Costamagna, 1988; Touboul *et al.*, 1984).

Table 2 shows the Mo-O bond distances in the $\{[Mo_8O_{26}(MoO_4)]^{6-}\}_n$ anion. Each MoO₆ octahedron in the Mo_8O_{26} moieties has two short *cis*, two medium trans and two long cis Mo-O bonds in the ranges 1.698(6)-1.765(5) Å for the short bonds, 1.880(5)-2.042(5) Å for the medium bonds and 2.121(5)-2.447 (5) Å for the long bonds. All the Mo—O(terminal) distances are in the short range, which is indicative of double bonding. There are two other short Mo-O distances, namely Mo3-O9 1.764(5) and Mo7-O27 1.765 (5) Å, for which the O atoms are bicoordinate. These values agree very well with those reported for MAM. The long Mo-O distances of each MoO₆ octahedron are due to the trans influence of the terminal O atoms. The Mo...Mo distances between the MoO_4 tetrahedron and the neighbouring MoO_6 octahedra are Mo4···Mo5 3.513(1) and Mo5···Mo6 3.600(1)Å, which are shorter than the corresponding distance [3.661 (1) Å] for MAM (Bharadwaj et al., 1986). In addition, the Mo-O distances between Mo5 and the non-bridging O atoms, O15 and O16, are 1.733 (6) and 1.709 (6) Å, respectively, and are shorter than those in MAM [1.743(5)-1.752(4)]Å; Bharadwaj et al., 1986]. The O15 and O16 atoms are 2.82-3.85 Å away from the nearest terminal O atoms: O15...O5 3.647 (8), O15...O20 3.053 (8), O15...O24ⁱⁱ 3.603 (8), O16...O5 3.003 (8), O16...O7 3.852 (8), O16...O18 $3.365(8), O16 \cdots O24^{ii}$ 2.823(8) Å. The least-squares plane containing Mo2, Mo3, Mo2ⁱ and Mo3ⁱ in the Mo₈O₂₆ moiety intersects with the corresponding plane containing Mo7, Mo8, Mo7ⁱⁱ and Mo8ⁱⁱ in the adjacent Mo₈O₂₆ moiety at an angle of 65.0(1)°. This angle indicates that the configuration of the two adjacent Mo₈O₂₆ moieties is not parallel but zigzag. Fig. 2 shows the crystal structure of (NH₄)₆[Mo₈O₂₆(MoO₄)].5H₂O viewed along the a axis. All of the ammonium N atoms have four to six contacts to the anion and water O atoms with N···O distances of 2.78–3.00 Å, probably extending the hydrogen-bond network across the $\{[Mo_8O_{26}(MoO_4)]^{6-}\}_n$ chains.

Fig. 1. An *ORTEPII* (Johnson, 1976) plot of the $[(MO_8O_{26})_2(MOO_4)]^{10-}$ anion with the atom-numbering scheme.

 $\omega/2\theta$ scans

Refinement

R = 0.0414wR = 0.0337

S = 1.8266280 reflections

Refinement on F

246 parameters

 $w = 1/\sigma^2(F)$

H atoms not located

 $(\Delta/\sigma)_{\rm max} = 0.0109$

Stuart, 1983)

6280 observed reflections $[I > 2.0\sigma(I)]$

$k = -23 \rightarrow 23$ 3 standard reflections monitored every 100 reflections intensity decay: 1.6%

$\Delta \rho_{\rm max} = 2.46 \, {\rm e} \, {\rm \AA}^{-3}$ (0.71 Å from O33) $\Delta \rho_{\rm min} = -1.18 \, {\rm e \, \AA^-}$ (0.61 Å from O33) Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

$B_{\rm iso}$ for O and N, $B_{\rm eq} = (8\pi^2/3)\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ for Mo atoms.

Fig. 2. A packing diagram for (NH₄)₆[Mo₈O₂₆(MoO₄)].5H₂O viewed along the *a* axis.

Experimental

5 g of (NH₄)₆Mo₇O₂₄.4H₂O was dissolved in 13 ml of water and 0.8 ml CH₃COOH was added dropwise with stirring. The solution, at pH 4, was warmed and kept at 318 K for 20 min and then cooled to room temperature. Colourless crystals were produced after 3 d, together with a white powder.

Crystal data

$(NH_{4})_{6}[Mo_{9}O_{30}].5H_{2}O$ $M_{r} = 1541.75$ Triclinic $P\overline{1}$ $a = 10.622 (2) \text{ Å}$ $b = 18.234 (1) \text{ Å}$ $c = 10.400 (2) \text{ Å}$ $\alpha = 95.31 (1)^{\circ}$ $\beta = 120.16 (1)^{\circ}$ $\gamma = 96.62 (1)^{\circ}$ $V = 1702 (1) \text{ Å}^{3}$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 10-12.5^{\circ}$ $\mu = 3.24 \text{ mm}^{-1}$ T = 298 K Thin plate $0.3 \times 0.15 \times 0.01 \text{ mm}$ Colourless
$V = 1703 (1) Å^{3}$ $Z = 2$ $D_{x} = 3.01 \text{ Mg m}^{-3}$ Data collection Rigaku AFC-5S diffractom- eter	$R_{\rm int} = 0.018$ $\theta_{\rm max} = 27.5^{\circ}$

	x	v	z	B_{iso}/B_{e}
Mol	1.14739 (8)	-0.05520 (4)	0.35422 (8)	1.86 (2
Mo2	0.82078 (7)	-0.02037(4)	0.12146(7)	1.86 (2
Mo3	1.03597 (7)	0.09269 (4)	0.48056(7)	1.60 (2
Mo4	0.68298 (7)	0.10210 (4)	0.23128 (8)	1.87 (2
Mo5	0.88131 (8)	0.28433 (4)	0.30654 (8)	2.06 (2
Mo6	0.72850(7)	0.31048 (4)	-0.07940(7)	1.77 (2
Mo7	0.91794 (7)	0.48640 (4)	0.10453 (7)	1.55 (2
Mo8	0.63906(7)	0.44425 (4)	-0.27349 (7)	1.81 (2
Mo9	0.83393 (7)	0.61325 (4)	-0.14701(8)	1.75 (2
01	1.0982 (6)	-0.1454 (3)	0.2594 (6)	2.9(1)
02	1.3236 (6)	-0.0250(3)	0.3928(6)	2.9(1)
03	0.7680 (6)	0.0213 (3)	-0.0343(6)	2.7 (1)
04	0.7606 (6)	-0.1138(3)	0.0532(6)	2.7 (1)
05	1.0960 (6)	0.1841 (3)	0.5665 (6)	2.6(1)
06	0.5382 (6)	0.0960 (3)	0.2605 (6)	2.9(1)
07	0.6226 (6)	0.1340(3)	0.0642 (6)	2.9(1)
08	1.0281 (5)	-0.0115 (3)	0.1819(6)	2.0(1)
09	1.1896 (6)	0.0680(3)	0.4761 (6)	2.0(1)
O10	0.9064 (5)	0.0946 (3)	0.2749 (5)	1.8(1)
011	0.6684 (5)	-0.0012(3)	0.1651(6)	2.0(1)
012	0.8235 (5)	0.0782 (3)	0.4583 (5)	1.9 (1)
013	1.0525 (5)	0.0394 (3)	0.6397 (5)	1.7 (1)
014	0.7832 (6)	0.2090 (3)	0.3451 (6)	2.2(1)
015	0.9599 (7)	0.3567 (3)	0.4600(7)	3.4 (1)
016	1.0178 (6)	0.2519(3)	0.2893 (6)	3.0(1)
017	0.7573 (6)	0.3138 (3)	0.1306(6)	2.2(1)
018	0.8025 (6)	0.2336(3)	-0.0882 (6)	2.8(1)
019	0.5427 (6)	0.2752 (3)	-0.1606 (6)	2.7 (1)
O20	0.9428 (6)	0.4811 (3)	0.2777 (6)	2.4 (1)
O21	0.4616(6)	0.4082 (3)	-0.3200 (6)	2.5(1)
022	0.6290 (6)	0.4478 (3)	-0.4417 (6)	2.7 (1)
O23	0.8193 (6)	0.6977 (3)	-0.0740 (6)	2.7 (1)
O24	0.7846 (6)	0.6185 (3)	-0.3289 (6)	2.6(1)
025	0.7191 (5)	0.3500(3)	-0.2457 (5)	1.9(1)
026	0.7222 (5)	0.4304 (3)	-0.0315 (5)	1.7 (1)
027	0.8836(5)	0.5780(3)	0.0802(5)	1.9(1)
O28	0.6507(5)	0.5462 (3)	-0.2014 (5)	2.0(1)
029	1.0442 (5)	0.6217 (3)	-0.0563 (5)	1.8(1)
O30	1.1179 (5)	0.5040 (3)	0.1427 (5)	1.8 (1)
031	0.3070 (7)	0.1298 (3)	0.2941 (7)	3.7 (1)
032	0.558(1)	0.3089(5)	0.364(1)	8.4 (3)
033	0.580(1)	0.4535 (5)	0.139(1)	8.7 (3)
034	0.6032 (9)	0.1907 (4)	0.5601 (9)	6.0 (2)
O35	0.7019 (8)	0.6458 (4)	0.1737 (9)	5.6 (2)

NI	0.9798 (7)	-0.1439 (4)	-0.0641 (7)	2.6(1)
N2	1.2040 (8)	0.4858 (4)	0.5618 (8)	3.2(1)
N3	0.9465 (9)	0.2929 (5)	0.7010 (9)	4.1 (2)
N4	0.5127 (8)	0.0817 (4)	0.7432 (8)	3.0(1)
N5	0.4308 (8)	0.2556 (4)	0.0486 (8)	3.5 (2)
N6	1.3260 (8)	0.2585 (4)	0.5001 (8)	3.4 (2)

Table 2. Selected geometric parameters (Å)

Mo1-01	1.712 (6)	Mo5-016	1.709 (6)
Mo1-02	1.714 (6)	Mo5-017	1.815 (5)
Mo1-08	1.915 (5)	Mo6-017	2.042 (5)
Mo1-09	2.350 (5)	Mo6-018	1.701 (6)
Mo1-O12 ⁱ	1.910 (5)	Mo6-019	1.719 (6)
Mo1-013 ⁱ	2.207 (5)	Mo6-025	1.896 (5)
Mo2-03	1.712 (5)	Mo6-026	2.213 (5)
Mo204	1.698 (6)	Mo6	2.217 (5)
Mo2	1.944 (5)	Mo7-020	1.699 (5)
Mo2-010	2.291 (5)	Mo7-026	1.912 (5)
Mo2-011	1.946 (5)	Mo7-027	1.765 (5)
Mo2-013 ⁱ	2.238 (5)	Mo7—O29 ¹¹	2.121 (5)
Mo3-05	1.700 (6)	Mo7-030	1.935 (5)
Mo3-09	1.764 (5)	Mo7—O30 ⁱⁱ	2.429 (5)
Mo3-010	1.880 (5)	Mo8-021	1.721 (5)
Mo3-012	2.132 (5)	Mo8-022	1.706 (5)
Mo3-013	1.939 (5)	Mo8-025	1.985 (5)
Mo3—O13 ⁱ	2.447 (5)	Mo8-026	2.261 (5)
Mo406	1.705 (6)	Mo8-028	1.906 (5)
Mo4-07	1.710 (6)	Mo8—O30 ⁱⁱ	2.253 (5)
Mo4-010	2.205 (5)	Mo9-023	1.711 (6)
Mo4011	1.905 (5)	Mo9-024	1.706 (5)
Mo4-012	2.190 (5)	Mo9-027	2.320 (5)
Mo4014	2.040 (5)	Mo9-028	1.954 (5)
Mo5-014	1.824 (5)	Mo9-029	1.919 (5)
Mo5-015	1.733 (6)	Mo9-O30	2.254 (5)

Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) 2 - x, 1 - y, -z.

Pairs of atoms further than 3.97 Å apart were assigned to be pairs of N atoms of ammonium ions, as distances between two N atoms should be longer than 3.7 Å (Seimons & Templeton, 1954).

All calculations were carried out using *TEXSAN* (Molecular Structure Corporation, 1989) software running on a MicroVAXII computer.

Lists of structure factors, anisotropic displacement parameters, hydrogen-bond distances and complete geometry have been deposited with the IUCr (Reference: OH1091). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Adams, R. D., Klemperer, W. G. & Liu, R. (1979). J. Chem. Soc. Chem. Commun. pp. 256-257.
- Bharadwaj, P. K., Ohashi, Y., Sasada, Y., Sasaki, Y. & Yamase, T. (1986). Acta Cryst. C42, 545-547.
- Böschen, I., Buss, B. & Krebs, B. (1974). Acta Cryst. B30, 48-56.
- Garin, J. L. & Costamagna, J. A. (1988). Acta Cryst. C44, 779-782.
- Isobe, M., Marumo, F., Yamase, T. & Ikawa, T. (1978). Acta Cryst. B34, 2728-2731.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kamenar, B., Korpar-Colig, B., Penavic, M. & Cindric, M. (1990). J. Chem. Soc. Dalton Trans. pp. 1125-1130.
- McCarron, E. M. III & Harlow, I. R. L. (1983). J. Am. Chem. Soc. 105, 6179-6181.
- McCarron, E. M. III, Whitney, J. F. & Chase, D. B. (1984). *Inorg. Chem.* 23, 3275–3280.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Niven, M. L., Cruywagen, J. J. & Heyns, B. B. (1991). J. Chem. Soc. Dalton Trans. pp. 2007-2011.

Seimons, W. J. & Templeton, D. H. (1954). Acta Cryst. 7, 194-198.

Touboul, M., Idoura, C. & Tolédano, P. (1984). Acta Cryst. C40, 1652-1655.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Yamase, T. & Naruke, H. (1991). J. Chem. Soc. Dalton Trans. pp. 285-292.

Acta Cryst. (1996). C52, 1872-1874

Triperchloratoytterbium(III) Monohydrate, Yb(ClO₄)₃.H₂O

CLAUDE BELIN, FRÉDÉRIC FAVIER, J. LOUIS PASCAL AND MONIQUE TILLARD-CHARBONNEL

Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, URA CNRS 79 CC15, Université de Montpellier II, Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France

(Received 6 November 1995; accepted 6 February 1996)

Abstract

The crystal structure of triperchloratoytterbium(III) monohydrate, $Yb(ClO_4)_3$.H₂O, has been determined. In this coordination compound, bidentate and tridentate perchlorato groups form a channelled three-dimensional network. The eightfold coordination of ytterbium is completed by one strongly bound water molecule lying inside the channels.

Comment

In spite of its well known weak coordination behaviour, ClO_4^- can compete with more basic molecules or ions such as H_2O or OH^- in complexing small-sized and polarizing cations like the lanthanide ions Ln^{3+} (Huskowska, Legendziewicz, Schleid & Meyer, 1992). This is demonstrated well by the compounds $Nd_2(OH)_3(ClO_4)_3.5H_2O$ (Csöregh, Huskowska, Ertan, Legendziewicz & Kierkegaard, 1989) and $Pr_2(OH)_3H_2O(ClO_4)_3$ (Schleid, Meyer, Oczko & Legendziewicz, 1991), and particularly by the title compound, Yb(ClO_4)_3.H_2O.

The molecular structure of Yb(ClO₄)₃.H₂O comprises bidentate and tridentate perchlorato groups that form catenated rings including six Yb atoms (Yb— Yb distances range from 5.77 to 5.92 Å). These rings are linked to each other exclusively through tridentate groups to form large channels along the *c* axis that contain water molecules. The bridging bidentate